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Ferric peroxo porphyrin complexes

are strong nucleophiles capable of epoxidizing electron-deficient
olefins.1,2 Such species are postulated as the active oxidant in the
cytochrome P450-like aromatase and other enzymes.2 [(P)FeIII(O2

2-)]-

complexes3 were first synthesized by Valentine and co-workers,
from reaction of [(P)FeIII-Cl] with potassium superoxide in aprotic
solvents.4-8 The side-onη2-peroxo high-spin ferric formulation is
based on physical-spectroscopic studies,9,10 and by analogy to the
structurally characterizedη2-peroxomanganese complex [(TPP)Mn-
(O2

2-)]-.11,12

In cytochrome c oxidase (CcO), hemea3-peroxo, hemea3-
hydroperoxo or hemea3-(µ-peroxo)-copper13 species are likely
transients which form following electron transfer from the proximal
Cu1+

B site to the initially generated hemea3-O2 adduct (formally a
superoxo-iron(III) species).14 Thus, a viable approach to the
understanding of O2-binding and reductive O-O cleavage at the
CcO heme‚‚‚Cu active site is to probe reactions between iron-
peroxo hemea3 synthetic models and CuB-site analogue complexes.

In this report, we describe (Scheme 1) (1) a facile method for
reduction of a heme-O2 species [(F8TPP)FeIII (O2

-)(S)] (2),3

generating the ferric peroxo porphyrin complex [(F8TPP)FeIII (O2
2-)]-

(3) and (2) that this can be subsequently reacted with a ligand-
copper(II) complex, affording a heme-peroxo-copper heterobi-
nuclear compound. This distinctive approach to generating heme-

peroxo and heme-peroxo-copper complexes is of considerable
interest since these compounds closely resemble short-lived species
relevant to the cytochromec oxidase reaction mechanism.14

Immediate formation of the iron(III)-superoxo complex [(F8TPP)-
FeIII (O2

-)(THF)] (2) [λmax ) 416 (Soret) and 534 nm]15 is observed
upon bubbling a tetrahydrofuran (THF) solution of [(F8TPP)FeII-
(THF)2] (1) [λmax ) 422 (Soret) and 541 nm] with dioxygen at
-80 °C (Scheme 1 and Figure 1). After removal of excess O2 by
vacuum/Ar cycling, addition of 1 equiv of cobaltocene (as a strong
outer-sphere reductant)16,17 results in the generation of [CoIIICp2]-
[(F8TPP)FeIII (O2

2-)]- (3) based on its characteristic UV-vis
spectrum [λmax ) 435 (Soret), 540 (sh) and 561 nm].10,18 Similar
chemistry is observed with CH2Cl2/10% CH3CN (v/v) as solvent,
where CH3CN serves as an axial heme ligand promoting formation
of [(F8TPP)FeIII (O2

-)(CH3CN)].15,17

A number of lines of evidence further support the formulation
given for [CoIIICp2][(F8TPP)FeIII (O2

2-)]- (3):
(1) The presence of the cobaltocenium ([CoIIICp2]+) as the

countercation is evident by the occurrence of a characteristic new
UV band at 262 nm,19 and a 6.7 ppm signal in the1H NMR
spectrum (CH2Cl2/10% CH3CN, -80 °C).16

(2) EPR spectra of [CoIIICp2][(F8TPP)FeIII (O2
2-)]- (3) (Figure

2) show a strong marker signal atg ) 4.2, typical for rhombic
[(P)FeIII (O2

2-)]- complexes10,18andη2-peroxo-nonheme iron spe-
cies.20,21With excess CoIICp2, which eliminates high-spin iron(III)
heme impurities (such as (F8TPP)Fe-OH, g ≈ 7.0), the additional
characteristicg ) 8.7 signal is also observed.10,20,21

(3) [(F8TPP)FeIII (O2
-)(THF)] (2) is characterized by its typical

1H-NMR diamagnetic spectrum, (δpyrrole ) 8.5 ppm, THF-d8

solvent).15 Addition of CoIICp2 leads to a downfield shifting of the
pyrrole resonance to 90 ppm.17 The complex shows Curie behavior
(-80 to -40 °C) and extrapolation to room temperature leads to
an assignment of this signal occurring at 68 ppm for [CoIIICp2]-
[(F8TPP)FeIII (O2

2-)]- (3),17 close to published values for other
[(P)FeIII (O2

2-)]- complexes.22,23

Scheme 1

Figure 1. UV-vis spectra of (F8TPP)FeII(THF)2 (1), (F8TPP)FeIII (O2
-)(THF)

(2) and [CoIIICp2][(F8TPP)FeIII (O2
2-)]- (3) in THF at 193 K. See text for

further discussion.
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(4) The peroxidic nature of3 is demonstrated by its protonation
using hydrochloric acid, leading to the formation of (F8TPP)FeIII -
Cl and hydrogen peroxide (>70% yield).17,24

The reaction of [CoIIICp2][(F8TPP)FeIII (O2
2-)]- (3) toward the

pentacoordinated copper(II) complex [CuII(TMPA)(CH3CN)](ClO4)2

(4)25,26 (which has a labile CH3CN ligand) is suggestive of
nucleophilic behavior of3 (Scheme 1), otherwise known for
[(P)FeIII (O2

2-)]- complexes.1,2 When4 was added to a solution of
3 generated in THF at-95 °C, heme-µ-peroxo-copper complex
[(F8TPP)FeIII-(O2

2-)-CuII(TMPA)](ClO4) (5) is obtained;17 a solid
form was isolated by precipitation with heptane.27 Redissolution
(-80 °C) showed that the solid retains the unique UV-vis and1H
NMR spectroscopic features known for5,17 which was previously
only generated by oxygenation of a 1:1 mixture of reduced
complexes (F8TPP)FeII and [CuI(TMPA)(CH3CN)](ClO4), Scheme
1.12,28-30

It is noteworthy that excess CoIICp2 (E° ≈ -1.3 V vs Fc+/Fc)16

doesnot react with theη2-peroxo complex [(F8TPP)FeIII (O2
2-)]-

(3); however, it does reduce theµ-peroxo complex [(F8TPP)FeIII -
(O2

2-)-CuII(TMPA)]+ (5) (CH3CN, -40 °C), yielding the corre-
spondingµ-oxo species [(F8TPP)FeIII -(O2-)-CuII(TMPA)]+ (6)
[UV-vis: λmax ) 433 (Soret) and 555 nm] (Scheme 1).28 This
inertness toward reductants has also been observed for theη2-peroxo
complex [(EDTA)FeIII (O2

2-)]3- and is indicative that the O-O bond
is not activated for reductive cleavage.20 The details of this peroxo-
to-oxo conversion (5 to 6) are unclear and require further study;
coordination by copper(II) as an electrophile in5 probably assists
the O-O bond “activation”.

In summary, we have developed a rather simple method to
generate an important peroxo-heme species via O2 chemistry and
chemical reduction with cobaltocene. This peroxo-heme species
reacts with a copper(II) complex, yielding a heme-peroxo-copper
adduct which resembles a suggested transient in the reaction
mechanism of CcO.14 This reactivity methodology opens avenues
for future investigation whereby [CoIIICp2][(F8TPP)FeIII (O2

2-)]- (3)
can be reacted with copper(I) complexes (which can serve as both
a copper source and a reducing equivalent),29 and possibly additional
proton or electron sources,31 in an attempt to understand reductive
cleavage of an O-O bond in a heme-Cu environment.
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Figure 2. X-band EPR spectra of [CoIIICp2][(F8TPP)FeIII (O2
2-)]- (3)

generated with 1 equiv of cobaltocene (upper spectrum) and with an excess
of cobaltocene (lower spectrum) in CH2Cl2/10% CH3CN: temperature, 5
K; time constant 20.48 ms; sweep width 6000 G.
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